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Abstract

A mechanical impact oscillator and a diode rectifier circuit of an impact oscillator are presented. Time series and phase

portrait analysis are performed for both oscillators. The results show that the proposed electronic impact oscillator is in

agreement with the mechanical impact oscillator. For varying the driving frequency, a fixed harmonic input force can

generate a periodic or non-periodic impact oscillation. The phenomena of bifurcation are also observed in both impact

oscillators.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The motion with amplitude constraint is considered as impact oscillator. Over the past few years, the
researchers were interested in the fundamentals of impact dynamics [1–4]. The bifurcation theory was applied
to investigate the stability of system behavior as the parameter changed. Rich phenomena have been found
and given benefit for understanding impact dynamics. In the practical application of condition monitoring, the
experimental impacting signals were examined using blind deconvolution to confirm the bifurcation diagram
[5]. Recently, such stable or unstable impact oscillators can be controlled and kept in a desired position [6].

Recent results also show that many rich and complicated phenomena, such as Neimark–Sacker, Hop-flip
bifurcation, double Neimark–Sacker bifurcation, etc., are found in a system with two or more degrees of
freedom impact oscillators [7,8]. In this paper, a single degree of freedom mechanical impact oscillator and a
modified version of the electronic impact oscillator [9–12] are presented. The motion behaviors of both
oscillators are investigated using computer simulation.
2. Mechanical impact oscillator

2.1. The model

The model considered here is a mass-spring-damping impact system shown in Fig. 1, where the mass is
under a harmonic excitation and the motion is constrained by an endstop. For simplicity, the impact is
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Mechanical impact oscillator.
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Fig. 2. (a) The mechanical impact oscillator shows period 1 single-impact oscillation at driving frequency o ¼ 2.5. (b) Phase portrait of

input vs. output.
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assumed as instantaneous and the impact oscillator is governed by the following equation:

m €xþ 2z _xþ kx ¼ p cos ot for x4g

xðtþÞ ¼ xðt�Þ and _xðtþÞ ¼ �r _xðt�Þ for xpg, ð1Þ

where €x, _x and x are the acceleration, the velocity and the displacement and m, z, k, p, o and g are the mass,
the damping, the stiffness, the driving amplitude, the driving frequency and the endstop, respectively. ðtþÞ
represents the time after impact, ðt�Þ represents the time before impact and r is restitution coefficient.
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Fig. 3. (a) The mechanical impact oscillator shows period 2 double-impact oscillation at driving frequency o ¼ 2.7. (b) Phase portrait of

input vs. output.
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2.2. The results

In this section, the simulation results are integrated by the Runge–Kutta algorithm for Eq. (1). The
parameters of Eq. (1) are fixed at m ¼ 1, z ¼ 0:01, k ¼ 1, p ¼ 1, g ¼ 0 and r ¼ 0.6. For different driving
frequencies, the simulation results are displayed between 100 and 150 s, ignoring the first 100 s to make sure
the system is in the steady state.

The results obtained fixing the harmonic input force but varying the driving frequency from 2.5 to 2.8 are
shown in Figs. 2–4. For the input driving frequency o ¼ 2.5, Fig. 2(a) shows the period 1 single-impact
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Fig. 4. (a) The mechanical impact oscillator shows non-periodic impact oscillation at driving frequency o ¼ 2.8. (b) Phase portrait of

input vs. output.
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oscillation and Fig. 2(b) shows the phase portrait of the input and output oscillations. As the driving
frequency increases to o ¼ 2.7, the impact oscillation transits to period 2 double-impact motion. The
bifurcation phenomenon occurs as the results shown in Fig. 3. As the driving frequency o increases to 2.8,
the impact oscillator exhibits non-periodic oscillation. Fig. 4(a) shows a ‘random-like’ impact motion and
Fig. 4(b) shows a complex phase portrait. These results confirm that a periodic input oscillation can generate a
periodic or non-periodic impact oscillation in this mechanical impact oscillator.

3. Electronic impact oscillator

3.1. The model

For a motion constraint of impact oscillator in Fig. 1, the impact dynamics show that a harmonic
input oscillation can generate a periodic or non-periodic impact motion. This depends on the control
parameter of the driving frequency. In this section, the motion constraint of the oscillator is simulated by a
feedback diode rectifier circuit as shown in Fig. 5. It consists of a series connection of an ac-voltage
source (XFG1), a linear operational amplifier circuit (U3), a nonlinear diode (D1) and two integral circuits
(U1 and U2).

In this circuit, the impulse impact force is generated by a short period of the positive voltage in the diode
circuit D1. In fact, the impact force is proportional to impact acceleration. Therefore, the velocity and the
displacement of impact oscillation can be generated by integral circuits U1 and U2, respectively.

3.2. The results

In the following, commercial electronic circuit simulation software, MultiSim [13], is used. As shown in the
schematic circuit in Fig. 5, the electronic impact oscillator circuits are connected by a nonlinear element of
Fig. 5. Electronic impact oscillator.
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diode 1N4001 and three linear elements of operational amplifiers mA741. The input is driven by
function generator XFG1 with harmonic sine wave and the output of impact oscillation is illustrated in
display XSC1.

The results obtained fixing harmonic input voltage at1.2 V and varying the driving frequency from 50 to
65Hz are shown in Figs. 6 and 7. For a 50Hz input driving frequency, Fig. 6(a) shows the period 1 single-
impact oscillation and Fig. 6(b) shows the phase portrait of the input and output oscillations. As the driving
frequency increases to 60Hz, the impact oscillation transits to period 2 double-impact motion. The bifurcation
phenomenon occurs and the corresponding results are shown in Fig. 7. As the driving frequency increases to
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Fig. 6. (a) The electronic impact oscillator shows period 1 single-impact oscillation at driving frequency 50Hz. (b) Phase portrait of input

vs. output.
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Fig. 7. (a) The electronic impact oscillator shows period 2 double-impact oscillation at driving frequency 60Hz. (b) Phase portrait of input

vs. output.

J.-Y. Lee / Journal of Sound and Vibration 311 (2008) 579–587 585
65Hz, the impact oscillator exhibits non-periodic impact oscillation. Fig. 8(a) shows a ‘random-like’ impact
motion and Fig. 8(b) shows a complex phase portrait. These results confirm that a periodic input oscillation
can generate a periodic or non-periodic impact oscillation in this circuit. These results are also in agreement
with the previous investigation of a mechanical impact oscillator.

4. Conclusion

The phenomena of bifurcation are observed both in the mechanical impact oscillator and in the electronic
impact oscillator. The impact dynamics showed that a harmonic input oscillation can generate a periodic or
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Fig. 8. (a) The mechanical impact oscillator shows non-periodic impact oscillation at driving frequency 65Hz (b) Phase portrait of input

vs. output.
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non-periodic impact motion that depends on the control parameter of driving frequency. In terms of
implementation, the electronic impact oscillator is much better than the mechanical impact oscillator.

It should be emphasized that the impact oscillator with such good dynamics could benefit the new
communication system using chaos. The proposed deterministic impact oscillator can produce periodic and
chaotic solutions, which can be used as carriers in analog and digital communication systems.
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